Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells.
نویسندگان
چکیده
The incision of the 8-oxoguanine in DNA by normal and Cockayne Syndrome (CS) cell extracts has been investigated. The incision in extracts derived from CS cells was approximately 50% of the incision level compared with extracts prepared from normal cells. In contrast, the incision rate of uracil and thymine glycol was not defective in CS cells. The deficiency in 8-oxoguanine incision was also demonstrated in a CS family. Whereas the proband had markedly less incision compared with the normal siblings, the parents had intermediate levels. The low level of 8-oxoguanine-DNA glycosylase in CS extracts correlates with the reduced expression of the 8-oxoguanine-DNA glycosylase gene (hOGG1) in CS cells. Both the levels of expression of the hOGG1 gene and the incision of 8-oxoguanine in DNAincreased markedly after transfection of CS-B cells with the CSB gene. We suggest that the CSB mutation leads to deficient transcription of the hOGG1 gene and thus to deficient repair of 8-oxoguanine in DNA.
منابع مشابه
Transcription through 8-oxoguanine in DNA repair-proficient and Csb(-)/Ogg1(-) DNA repair-deficient mouse embryonic fibroblasts is dependent upon promoter strength and sequence context.
Cells from Cockayne syndrome patients are characterized by a deficiency in transcription-coupled repair (TCR) of UV-induced lesions. These cells have also been shown to be sensitive to oxidative stress and defective in TCR of some oxidative lesions. Because some discrepancies about this pathway have been recently reported in the literature, we describe here a system that allows us to analyze th...
متن کاملPoly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein.
Activation of poly(ADP-ribose)polymerases 1 and 2 (PARP-1 and PARP-2) is one of the earliest responses of mammalian cells to DNA damage by numerous genotoxic agents. We have analysed the influence of PARP inhibition, either achieved by over-expression of the DNA binding domain of PARP-1 or by treatment with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone, on the repair of single-s...
متن کاملHost DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice.
Although DNA repair proteins in bacteria are critical for pathogens' genome stability and for subverting the host defense, the role of host DNA repair proteins in response to bacterial infection is poorly defined. Here, we demonstrate, for the first time, that infection with the Gram-negative bacterium Pseudomonas aeruginosa significantly altered the expression and enzymatic activity of 8-oxogu...
متن کاملDifferential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells.
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the tr...
متن کاملThe Cockayne Syndrome group B gene product is involved in general genome base excision repair of 8-hydroxyguanine in DNA.
Cockayne Syndrome (CS) is a human genetic disorder with two complementation groups, CS-A and CS-B. The CSB gene product is involved in transcription-coupled repair of DNA damage but may participate in other pathways of DNA metabolism. The present study investigated the role of different conserved helicase motifs of CSB in base excision repair. Stably transformed human cell lines with site-direc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 27 5 شماره
صفحات -
تاریخ انتشار 1999